Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1311.4569

 Article overview



Chemical Cartography with APOGEE: Large-scale Mean Metallicity Maps of the Milky Way
Michael R. Hayden ; Jon A. Holtzman ; Jo Bovy ; Steven R. Majewski ; Carlos Allende Prieto ; Timothy C. Beers ; Katia Cunha ; Peter M. Frinchaboy ; Ana E. García Pérez ; Léo Girardi ; Fred R. Hearty ; Jennifer A. Johnson ; Young Sun Lee ; David Nidever ; Ricardo P. Schiavon ; Katharine J. Schlesinger ; Donald P. Schneider ; Mathias Schultheis ; Matthew Shetrone ; Verne V. Smith ; Gail Zasowski ; Dmitry Bizyaev ; Diane Feuillet ; Sten Hasselquist ; Karen Kinemuchi ; Elena Malanushenko ; Viktor Malanushenko ; Robert O'Connell ; Kaike Pan ; Keivan Stassun ;
Date 18 Nov 2013
AbstractWe present Galactic mean metallicity maps derived from the first year of the SDSS-III APOGEE experiment. Mean abundances in different zones of Galactocentric radius (0 < R < 15 kpc) at a range of heights above the plane (0 < |z| < 3 kpc), are derived from a sample of nearly 20,000 stars with unprecedented coverage, including stars in the Galactic mid-plane at large distances. We also split the sample into subsamples of stars with low and high-[{alpha}/M] abundance ratios. We assess possible biases in deriving the mean abundances, and find they are likely to be small except in the inner regions of the Galaxy. A negative radial gradient exists over much of the Galaxy; however, the gradient appears to flatten for R < 6 kpc, in particular near the Galactic mid-plane and for low-[{alpha}/M] stars. At R > 6 kpc, the gradient flattens as one moves off of the plane, and is flatter at all heights for high-[{alpha}/M] stars than for low-[{alpha}/M] stars. Alternatively, these gradients can be described as vertical gradients that flatten at larger Galactocentric radius; these vertical gradients are similar for both low and high-[{alpha}/M] populations. Stars with higher [{alpha}/M] appear to have a flatter radial gradient than stars with lower [{alpha}/M]. This could suggest that the metallicity gradient has grown steeper with time or, alternatively, that gradients are washed out over time by migration of stars.
Source arXiv, 1311.4569
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica