Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » 1410.0058

 Article overview


Numerical Simulation of Two Dimentional sine-Gordon Solitons Using the Modified Cubic B-Spline Differential Quadrature Method
H. S. Shukla ; Mohammad Tamsir ; Vineet K. Srivastava ;
Date Tue, 30 Sep 2014 21:27:49 GMT (1872kb)
AbstractIn this article, a numerical simulation of two dimensional nonlinear sine-Gordon equation with Neumann boundary condition is obtained by using a composite scheme referred to as a modified cubic B spline differential quadrature method. The modified cubic B-spline serves as a basis function in the differential quadrature method to compute the weighting coefficients. Thus, the sine-Gordon equation is converted into a system of second order ordinary differential equations (ODEs). We solve the resulting system of ODEs by an optimal five stage and fourth-order strong stability preserving Runge Kutta scheme. Both damped and undamped cases are considered for the numerical simulation with Josephson current density function with value minus one. The computed results are found to be in good agreement with the exact solutions and other numerical results available in literature.
Source arXiv, 1410.0058
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica