Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 1410.3492

 Article overview


The Power of Imaging: Constraining the Plasma Properties of GRMHD Simulations using EHT Observations of Sgr A*
Chi-Kwan Chan ; Dimitrios Psaltis ; Feryal Ozel ; Ramesh Narayan ; Aleksander Sadowski ;
Date 13 Oct 2014
AbstractRecent advances in general relativistic magnetohydrodynamic simulations have expanded and improved our understanding of the dynamics of black-hole accretion disks. However, current simulations do not capture the thermodynamics of electrons in the low density accreting plasma. This poses a significant challenge in predicting accretion flow images and spectra from first principles. Because of this, simplified emission models have often been used, with widely different configurations (e.g., disk- versus jet-dominated emission), and were able to account for the observed spectral properties of accreting black-holes. Exploring the large parameter space introduced by such models, however, requires significant computational power that exceeds conventional computational facilities. In this paper, we use GRay, a fast GPU-based ray-tracing algorithm, on the GPU cluster El Gato, to compute images and spectra for a set of six general relativistic magnetohydrodynamic simulations with different magnetic field configurations and black-hole spins. We also employ two different parametric models for the plasma thermodynamics in each of the simulations. We show that, if only the spectral properties of Sgr A* are used, all twelve models tested here can fit the spectra equally well. However, when combined with the measurement of the image size of the emission using the Event Horizon Telescope, current observations rule out all models with strong funnel emission, because the funnels are typically very extended. Our study shows that images of accretion flows with horizon-scale resolution offer a powerful tool in understanding accretion flows around black-holes and their thermodynamic properties.
Source arXiv, 1410.3492
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica