Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1410.7674

 Article overview


Wind mass transfer in S-type symbiotic binaries I. Focusing by the wind compression model
Augustin Skopal ; Zuzana Carikova ;
Date 28 Oct 2014
AbstractContext: Luminosities of hot components in symbiotic binaries require accretion rates that are higher than those that can be achieved via a standard Bondi-Hoyle accretion. This implies that the wind mass transfer in symbiotic binaries has to be more efficient.
Aims: We suggest that the accretion rate onto the white dwarfs (WDs) in S-type symbiotic binaries can be enhanced sufficiently by focusing the wind from their slowly rotating normal giants towards the binary orbital plane.
Methods: We applied the wind compression model to the stellar wind of slowly rotating red giants in S-type symbiotic binaries.
Results: Our analysis reveals that for typical terminal velocities of the giant wind, 20 to 50 km/s, and measured rotational velocities between 6 and 10 km/s, the densities of the compressed wind at a typical distance of the accretor from its donor correspond to the mass-loss rate, which can be a factor of $sim$10 higher than for the spherically symmetric wind. This allows the WD to accrete at rates of $10^{-8} - 10^{-7}$ M(Sun)/year, and thus to power its luminosity.
Conclusions: We show that the high wind-mass-transfer efficiency in S-type symbiotic stars can be caused by compression of the wind from their slowly rotating normal giants, whereas in D-type symbiotic stars, the high mass transfer ratio can be achieved via the gravitational focusing, which has recently been suggested for very slow winds in Mira-type binaries.
Source arXiv, 1410.7674
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica