Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1410.7753

 Article overview


On the Morphology and Chemical Composition of the HR 4796A Debris Disk
Timothy J. Rodigas ; Christopher C. Stark ; Alycia Weinberger ; John H. Debes ; Philip M. Hinz ; Laird Close ; Christine Chen ; Paul S. Smith ; Jared R. Males ; Andrew J. Skemer ; Alfio Puglisi ; Katherine B. Follette ; Katie Morzinski ; Ya-Lin Wu ; Runa Briguglio ; Simone Esposito ; Enrico Pinna ; Armando Riccardi ; Glenn Schneider ; Marco Xompero ;
Date 28 Oct 2014
Abstract[abridged] We present resolved images of the HR 4796A debris disk using the Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the disk at 0.77 microns, 0.91 microns, 0.99 microns, 2.15 microns, 3.1 microns, 3.3 microns, and 3.8 microns. We find that the deprojected center of the ring is offset from the star by 4.76$pm$1.6 AU and that the deprojected eccentricity is 0.06$pm$0.02, in general agreement with previous studies. We find that the average width of the ring is 14$^{+3}_{-2}%$, also comparable to previous measurements. Such a narrow ring precludes the existence of shepherding planets more massive than about 4 mj, comparable to hot-start planets we could have detected beyond about 60 AU in projected separation. Combining our new scattered light data with archival HST/STIS and HST/NICMOS data at about 0.5-2 microns, along with previously unpublished Spitzer/MIPS thermal emission data and all other literature thermal data, we set out to constrain the chemical composition of the dust grains. After testing 19 individual root compositions and more than 8,400 unique mixtures of these compositions, we find that good fits to the scattered light alone and thermal emission alone are discrepant, suggesting that caution should be exercised if fitting to only one or the other. When we fit to both the scattered light and thermal emission simultaneously, we find mediocre fits (reduced chi-square about 2). In general, however, we find that silicates and organics are the most favored, and that water ice is usually not favored. These results suggest that the common constituents of both interstellar dust and solar system comets also may reside around HR 4796A, though improved modeling is necessary to place better constraints on the exact chemical composition of the dust.
Source arXiv, 1410.7753
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica