Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » 1411.5689

 Article overview


On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7<z<2.8
Camilla Pacifici ; Elisabete da Cunha ; Stéphane Charlot ; Hans-Walter Rix ; Mattia Fumagalli ; Arjen van der Wel ; Marijn Franx ; Michael V. Maseda ; Pieter G. van Dokkum ; Gabriel B. Brammer ; Ivelina Momcheva ; Rosalind E. Skelton ; Katherine Whitaker ; Joel Leja ; Britt Lundgren ; Susan A. Kassin ; Sukyoung K. Yi ;
Date 20 Nov 2014
AbstractInterpreting observations of distant galaxies in terms of constraints on physical parameters - such as stellar mass, star-formation rate (SFR) and dust optical depth - requires spectral synthesis modelling. We analyse the reliability of these physical parameters as determined under commonly adopted ’classical’ assumptions: star-formation histories assumed to be exponentially declining functions of time, a simple dust law and no emission-line contribution. Improved modelling techniques and data quality now allow us to use a more sophisticated approach, including realistic star-formation histories, combined with modern prescriptions for dust attenuation and nebular emission (Pacifici et al. 2012). We present a Bayesian analysis of the spectra and multi-wavelength photometry of 1048 galaxies from the 3D-HST survey in the redshift range 0.7<z<2.8 and in the stellar mass range 9<log(M/Mo)<12. We find that, using the classical spectral library, stellar masses are systematically overestimated (~0.1 dex) and SFRs are systematically underestimated (~0.6 dex) relative to our more sophisticated approach. We also find that the simultaneous fit of photometric fluxes and emission-line equivalent widths helps break a degeneracy between SFR and optical depth of the dust, reducing the uncertainties on these parameters. Finally, we show how the biases of classical approaches can affect the correlation between stellar mass and SFR for star-forming galaxies (the ’Star-Formation Main Sequence’). We conclude that the normalization, slope and scatter of this relation strongly depend on the adopted approach and demonstrate that the classical, oversimplified approach cannot recover the true distribution of stellar mass and SFR.
Source arXiv, 1411.5689
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica