Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1501.1417

 Article overview



Testing protostellar disk formation models with ALMA observations
Daniel Harsono ; Ewine van Dishoeck ; Simon Bruderer ; Zhi-Yun Li ; Jes Jorgensen ;
Date 7 Jan 2015
AbstractAbridged: Recent simulations have explored different ways to form accretion disks around low-mass stars. We aim to present observables to differentiate a rotationally supported disk from an infalling rotating envelope toward deeply embedded young stellar objects and infer their masses and sizes. Two 3D magnetohydrodynamics (MHD) formation simulations and 2D semi-analytical model are studied. The dust temperature structure is determined through continuum radiative transfer RADMC3D modelling. A simple temperature dependent CO abundance structure is adopted and synthetic spectrally resolved submm rotational molecular lines up to $J_{ m u} = 10$ are simulated. All models predict similar compact components in continuum if observed at the spatial resolutions of 0.5-1$"$ (70-140 AU) typical of the observations to date. A spatial resolution of $sim$14 AU and high dynamic range ($> 1000$) are required to differentiate between RSD and pseudo-disk in the continuum. The peak-position velocity diagrams indicate that the pseudo-disk shows a flatter velocity profile with radius than an RSD. On larger-scales, the CO isotopolog single-dish line profiles are similar and are narrower than the observed line widths of low-$J$ lines, indicating significant turbulence in the large-scale envelopes. However a forming RSD can provide the observed line widths of high-$J$ lines. Thus, either RSDs are common or a higher level of turbulence ($b sim 0.8 { m km s^{-1}}$ ) is required in the inner envelope compared with the outer part. Multiple spatially and spectrally resolved molecular line observations are needed. The continuum data give a better estimate on disk masses whereas the disk sizes can be estimated from the spatially resolved molecular lines observations. The general observable trends are similar between the 2D semi-analytical models and 3D MHD RSD simulations.
Source arXiv, 1501.1417
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica