Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3286
Articles: 2'244'342
Articles rated: 2592

18 August 2022
 
  » arxiv » gr-qc/0302073

 Article overview


Black Hole Thermodynamics and Riemann Surfaces
Kirill Krasnov ;
Date 18 Feb 2003
Journal Class.Quant.Grav. 20 (2003) 2235-2250
Subject General Relativity and Quantum Cosmology; Complex Variables | gr-qc hep-th math.CV
AffiliationAEI
AbstractWe use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2+1 dimensions. A general black hole in 2+1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G=2g+h-1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g,h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kaehler potential for the Weil-Peterson metric on the Schottky space. Bekenstein bound on the black hole entropy leads us to conjecture a new strong bound on this Kaehler potential.
Source arXiv, gr-qc/0302073
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2022 - Scimetrica