Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » 1502.1445

 Article overview


Ionospheric inversion of the Venus Express radio occultation data observed by Shanghai 25 m and New Norcia 35 m antennas
Su-jun Zhang ; Nian-chuan Jian ; Jin-ling Li ; Jin-song Ping ; Cong-yan Chen ; Ke-fei Zhang ;
Date 5 Feb 2015
AbstractElectron density profiles of the Venus’ ionosphere are inverted from the Venus Express (VEX) one-way open-loop radio occultation experiments carried out by Shanghai 25 m antenna from November 2011 to January 2012 at solar maximum conditions and by New Norcia 35 m antenna from August 2006 to June 2008 at solar intermediate conditions. The electron density profile (from 110 km to 400 km) retrieved from the X-band egress observation at Shanghai station, shows a single peak near 147 km with a peak density of about $2 imes 10^4 m{cm}^{-3}$ at a solar zenith angle of 94$^{circ}$. As a comparison, the VEX radio science (VeRa) observations at New Norcia station were also examined, including S-, X-band and dual-frequency data in the ingress mode. The results show that the electron density profiles retrieved from the S-band data are more analogous to the dual-frequency data in the profile shape, compared with the X-band data. Generally, the S-band results slightly underestimate the magnitude of the peak density, while the X-band results overestimate that. The discrepancy in the X-band profile is probably due to the relatively larger unmodeled orbital errors. It is also expected that the ionopause height is sensitive to the solar wind dynamical pressure in high and intermediate solar activities, usually in the range of 200 km - 1000 km on the dayside and much higher on the nightside. Structural variations ("bulges" and fluctuations) can be found in the electron density profiles in intermediate solar activity, which may be caused by the interaction of the solar wind with the ionosphere. Considerable ionizations can be observed in the Venus’ nightside ionosphere, which are unexpected for the Martian nightside ionosphere in most cases.
Source arXiv, 1502.1445
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica