Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1502.3024

 Article overview


Locating the most energetic electrons in Cassiopeia A
Brian W. Grefenstette ; Stephen P. Reynolds ; Fiona A. Harrison ; T. Brian Humensky ; Steven E. Boggs ; Chris L. Fryer ; Tracey DeLaney ; Kristin K. Madsen ; Hiromasa Miyasaka ; Daniel R. Wik ; Andreas Zoglauer ; Karl Forster ; Takao Kitaguchi ; Laura Lopez ; Melania Nynka ; Finn E. Christensen ; William W. Craig ; Charles J. Hailey ; Daniel Stern ; William W. Zhang ;
Date 10 Feb 2015
AbstractWe present deep ($>$2.4 Ms) observations of the Cassiopeia A supernova remnant with {it NuSTAR}, which operates in the 3--79 keV bandpass and is the first instrument capable of spatially resolving the remnant above 15 keV. We find that the emission is not entirely dominated by the forward shock nor by a smooth "bright ring" at the reverse shock. Instead we find that the $>$15 keV emission is dominated by knots near the center of the remnant and dimmer filaments near the remnant’s outer rim. These regions are fit with unbroken power-laws in the 15--50 keV bandpass, though the central knots have a steeper ($Gamma sim -3.35$) spectrum than the outer filaments ($Gamma sim -3.06$). We argue this difference implies that the central knots are located in the 3-D interior of the remnant rather than at the outer rim of the remnant and seen in the center due to projection effects. The morphology of $>$15 keV emission does not follow that of the radio emission nor that of the low energy ($<$12 keV) X-rays, leaving the origin of the $>$15 keV emission as an open mystery. Even at the forward shock front we find less steepening of the spectrum than expected from an exponentially cut off electron distribution with a single cutoff energy. Finally, we find that the GeV emission is not associated with the bright features in the {it NuSTAR} band while the TeV emission may be, suggesting that both hadronic and leptonic emission mechanisms may be at work.
Source arXiv, 1502.3024
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica