Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1503.7164

 Article overview


Caught in the act: gas and stellar velocity dispersions in a fast quenching compact star-forming galaxy at z~1.7
G. Barro ; S. M. Faber ; A. Dekel ; C. Pacifici ; P. G. Perez-Gonzalez ; E. Toloba ; D. C. Koo ; J. R. Trump ; S. Inoue ; Y. Guo ; F. Liu ; J. R. Primack ; A. M. Koekemoer ; G. Brammer ; A. Cava ; N. Cardiel ; D. Ceverino ; C. M. Eliche ; J. J. Fang ; S. L. Finkelstein ; D. D. Kocevski ; R. C. Livermore ; E. McGrath ;
Date 24 Mar 2015
AbstractWe present Keck-I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy (SFG) at a redshift $zsim1.7$. Its spectrum reveals both H$_{alpha}$ and [NII] emission lines and strong Balmer absorption lines. The H$_{alpha}$ and Spitzer MIPS 24 $mu$m fluxes are both weak, thus indicating a low star formation rate of SFR $lesssim5-10$ M$_{odot}$ yr$^{-1}$. This, added to a relatively young age of $sim700$ Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to 3 other galaxies in our sample, by $zsim1.5$. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, $sigma^{ m{gas}}_{!_{ m LOS}}=127pm32$ km s$^{-1}$, is nearly 40% smaller than that of its stars, $sigma^{star}_{!_{ m LOS}}=215pm35$ km s$^{-1}$. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of $sim1.5$ with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.
Source arXiv, 1503.7164
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica