Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1504.7923

 Article overview


Low-temperature spectrum of correlation lengths of the XXZ chain in the antiferromagnetic massive regime
Maxime Dugave ; Frank Göhmann ; Karol K. Kozlowski ; Junji Suzuki ;
Date Wed, 29 Apr 2015 16:36:29 GMT (1833kb,D)
AbstractWe consider the spectrum of correlation lengths of the spin-$frac{1}{2}$ XXZ chain in the antiferromagnetic massive regime. These are given as ratios of eigenvalues of the quantum transfer matrix of the model. The eigenvalues are determined by integrals over certain auxiliary functions and by their zeros. The auxiliary functions satisfy nonlinear integral equations. We analyse these nonlinear integral equations in the low-temperature limit. In this limit we can determine the auxiliary functions and the expressions for the eigenvalues as functions of a finite number of parameters which satisfy finite sets of algebraic equations, the so-called higher-level Bethe Ansatz equations. The behaviour of these equations, if we send the temperature $T$ to zero, is different for zero and non-zero magnetic field $h$. If $h$ is zero the situation is much like in the case of the usual transfer matrix. Non-trivial higher-level Bethe Ansatz equations remain which determine certain complex excitation parameters as functions of hole parameters which are free on a line segment in the complex plane. If $h$ is non-zero, on the other hand, a remarkable restructuring occurs, and all parameters which enter the description of the quantum transfer matrix eigenvalues can be interpreted entirely in terms of particles and holes which are freely located on two curves when $T$ goes to zero.
Source arXiv, 1504.7923
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica