Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1505.7761

 Article overview



A low-mass protostar's disk-envelope interface: disk-shadowing evidence from ALMA DCO+ observations of VLA1623
Nadia M. Murillo ; Simon Bruderer ; Ewine F. van Dishoeck ; Catherine Walsh ; Daniel Harsono ; Shih-Ping Lai ; Christian M. Fuchs ;
Date 28 May 2015
AbstractDue to instrumental limitations and a lack of disk detections, the structure between the envelope and the rotationally supported disk has been poorly studied. This is now possible with ALMA through observations of CO isotopologs and tracers of freezeout. Class 0 sources are ideal for such studies given their almost intact envelope and young disk. The structure of the disk-envelope interface of the prototypical Class 0 source, VLA1623A which has a confirmed Keplerian disk, is constrained from ALMA observations of DCO+ 3-2 and C18O 2-1. The physical structure of VLA1623 is obtained from the large-scale SED and continuum radiative transfer. An analytic model using a simple network coupled with radial density and temperature profiles is used as input for a 2D line radiative transfer calculation for comparison with the ALMA Cycle 0 12m array and Cycle 2 ACA observations of VLA1623. DCO+ emission shows a clumpy structure bordering VLA1623A’s Keplerian disk, suggesting a cold ring-like structure at the disk-envelope interface. The radial position of the observed DCO+ peak is reproduced in our model only if the region’s temperature is between 11-16K, lower than expected from models constrained by continuum and SED. Altering the density has little effect on the DCO+ position, but increased density is needed to reproduce the disk traced in C18O. The DCO+ emission around VLA1623A is the product of shadowing of the envelope by the disk. Disk-shadowing causes a drop in the gas temperature outside of the disk on >200AU scales, encouraging deuterated molecule production. This indicates that the physical structure of the disk-envelope interface differs from the rest of the envelope, highlighting the drastic impact that the disk has on the envelope and temperature structure. The results presented here show that DCO+ is an excellent cold temperature tracer.
Source arXiv, 1505.7761
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica