Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » 1505.7861

 Article overview



Redshift-Space Clustering of SDSS Galaxies --- Luminosity Dependence, Halo Occupation Distribution, and Velocity Bias
Hong Guo ; Zheng Zheng ; Idit Zehavi ; Peter S. Behroozi ; Chia-Hsun Chuang ; Johan Comparat ; Ginevra Favole ; Stefan Gottloeber ; Anatoly Klypin ; Francisco Prada ; David H. Weinberg ; Gustavo Yepes ;
Date 28 May 2015
AbstractWe present the measurements and modelling of the small-to-intermediate scale (0.1--25 Mpc/h) projected and three-dimensional (3D) redshift-space two-point correlation functions (2PCFs) of local galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7. We find a clear dependence of galaxy clustering on luminosity in both projected and redshift spaces, generally being stronger for more luminous samples. The measurements are successfully interpreted within the halo occupation distribution (HOD) framework with central and satellite velocity bias parameters to describe galaxy kinematics inside haloes and to model redshift-space distortion (RSD) effects. In agreement with previous studies, we find that more luminous galaxies reside in more massive haloes. Including the redshift-space 2PCFs helps tighten the HOD constraints. Moreover, we find that luminous central galaxies are not at rest at the halo centres, with the velocity dispersion about 30% that of the dark matter. Such a relative motion may reflect the consequence of galaxy and halo mergers, and we find that central galaxies in lower mass haloes tend to be more relaxed with respect to their host haloes. The motion of satellite galaxies in luminous samples is consistent with their following that of the dark matter. For faint samples, satellites tends to have slower motion, with velocity dispersion inside haloes about 85% that of the dark matter. We discuss possible applications of the velocity bias constraints on studying galaxy evolution and cosmology. In the appendix, we characterize the distribution of galaxy redshift measurement errors, which is well described by a Gaussian-convolved double exponential distribution.
Source arXiv, 1505.7861
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica