Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1505.8142

 Article overview



Experimental round-robin differential phase-shift quantum key distribution
Yu-Huai Li ; Yuan Cao ; Hui Dai ; Jin Lin ; Zhen Zhang ; Wei Chen ; Yu Xu ; Jian-Yu Guan ; Sheng-Kai Liao ; Juan Yin ; Qiang Zhang ; Xiongfeng Ma ; Cheng-Zhi Peng ; Jian-Wei Pan ;
Date 29 May 2015
AbstractIn conventional quantum key distribution (QKD) protocols, security is guaranteed by estimating the amount of leaked information through monitoring signal disturbance, which, in practice, is generally caused by environmental noise and device imperfections rather than eavesdropping. Such estimation therefore tends to overrate the amount of leaked information in practice, leads to a fundamental threshold of the bit error rate. The threshold becomes a bottleneck of the development of practical QKD systems. In classical communication, according to Shannon’s communication theory, information can transform through a noisy channel even if the background noise is very strong compare to the signal and hence the threshold of the bit error rate tends to 50%. One might wonder whether a QKD scheme can also tolerate error rate as high as 50%. The question is answered affirmatively with the recent work of round-robin differential phase-shift (RRDPS) protocol, which breaks through the fundamental threshold of the bit error rate and indicates another potential direction in the field of quantum cryptography. The key challenge to realize the RRDPS scheme lies on the measurement device, which requires a variable-delay interferometer. The delay needs to be chosen from a set of predetermined values randomly. Such measurement can be realized by switching between many interferometers with different delays at a high speed in accordance with the system repetition rate. The more delay values can be chosen from, the higher error rate can be tolerated. By designing an optical system with multiple switches and employing an active phase stabilization technology, we successfully construct a variable-delay interferometer with 128 actively selectable delays. With this measurement, we experimentally demonstrate the RRDPS QKD protocol and obtain a final key rate of 15.54 bps via a total loss of 18 dB and 8.9% error rate.
Source arXiv, 1505.8142
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica