Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1506.1365

 Article overview


Hardy is (almost) everywhere: nonlocality without inequalities for almost all entangled multipartite states
Samson Abramsky ; Carmen M. Constantin ; Shenggang Ying ;
Date 3 Jun 2015
AbstractWe show that all $n$-qubit entangled states, with the exception of tensor products of single-qubit and bipartite maximally-entangled states, admit Hardy-type proofs of non-locality without inequalities or probabilities. More precisely, we show that for all such states, there are local, one-qubit observables such that the resulting probability tables are logically contextual in the sense of Abramsky and Brandenburger, this being the general form of the Hardy-type property. Moreover, our proof is constructive: given a state, we show how to produce the witnessing local observables. In fact, we give an algorithm to do this. Although the algorithm is reasonably straightforward, its proof of correctness is non-trivial. A further striking feature is that we show that $n+2$ local observables suffice to witness the logical contextuality of any $n$-qubit state: two each for two for the parties, and one each for the remaining $n-2$ parties.
Source arXiv, 1506.1365
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica