Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1507.1014

 Article overview



Entropy production and the geometry of dissipative evolution equations
Celia Reina ; Johannes Zimmer ;
Date 2 Jul 2015
AbstractPurely dissipative evolution equations are often cast as gradient flow structures, $dot{mathbf{z}}=K(mathbf{z})DS(mathbf{z})$, where the variable $mathbf{z}$ of interest evolves towards the maximum of a functional $S$ according to a metric defined by an operator $K$. While the functional often follows immediately from physical considerations (e.g., the thermodynamic entropy), the operator $K$ and the associated geometry does not necessarily so (e.g., Wasserstein geometry for diffusion). In this paper, we present a variational statement in the sense of maximum entropy production that directly delivers a relationship between the operator $K$ and the constraints of the system. In particular, the Wasserstein metric naturally arises here from the conservation of mass or energy, and depends on the Onsager resistivity tensor, which, itself, may be understood as another metric, as in the Steepest Entropy Ascent formalism. This new variational principle is exemplified here for the simultaneous evolution of conserved and non-conserved quantities in open systems. It thus extends the classical Onsager flux-force relationships and the associated variational statement to variables that do not have a flux associated to them. We further show that the metric structure $K$ is intimately linked to the celebrated Freidlin-Wentzell theory of stochastically perturbed gradient flows, and that the proposed variational principle encloses an infinite-dimensional fluctuation-dissipation statement.
Source arXiv, 1507.1014
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica