Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1507.1945

 Article overview



Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4
Aleksandar M. Diamond-Stanic ; Alison L. Coil ; John Moustakas ; Christy A. Tremonti ; Paul H. Sell ; Alexander J. Mendez ; Ryan C. Hickox ; Greg H. Rudnick ;
Date 7 Jul 2015
AbstractWe present results on gas flows in the halo of a Milky Way-like galaxy at z=0.413 based on high-resolution spectroscopy of a background galaxy. This is the first study of circumgalactic gas at high spectral resolution towards an extended background source (i.e., a galaxy rather than a quasar). Using longslit spectroscopy of the foreground galaxy, we observe spatially extended H alpha emission with circular rotation velocity v=270 km/s. Using echelle spectroscopy of the background galaxy, we detect Mg II and Fe II absorption lines at impact parameter rho=27 kpc that are blueshifted from systemic in the sense of the foreground galaxy’s rotation. The strongest absorber EW(2796) = 0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight velocity dispersion (sigma=17 km/s) that are consistent with the observed properties of extended H I disks in the local universe. Our analysis of the rotation curve also suggests that this r=30 kpc gaseous disk is warped with respect to the stellar disk. In addition, we detect two weak Mg II absorbers in the halo with small velocity dispersions (sigma<10 km/s). While the exact geometry is unclear, one component is consistent with an extraplanar gas cloud near the disk-halo interface that is co-rotating with the disk, and the other is consistent with a tidal feature similar to the Magellanic Stream. We can place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the extended nature of the background source. We discuss the implications of these results for models of the geometry and kinematics of gas in the circumgalactic medium.
Source arXiv, 1507.1945
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica