Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » 1507.5926

 Article overview


A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey
V. Konyves ; Ph. Andre ; A. Men'shchikov ; P. Palmeirim ; D. Arzoumanian ; N. Schneider ; A. Roy ; P. Didelon ; A. Maury ; Y. Shimajiri ; J. Di Francesco ; S. Bontemps ; N. Peretto ; M. Benedettini ; J.-Ph. Bernard ; D. Elia ; M. J. Griffin ; T. Hill ; J. Kirk ; B. Ladjelate ; K. Marsh ; P. G. Martin ; F. Motte ; Q. Nguyen Luong ; S. Pezzuto ; H. Roussel ; K. L. J. Rygl ; S. I. Sadavoy ; E. Schisano ; L. Spinoglio ; D. Ward-Thompson ; G. J. White ;
Date 21 Jul 2015
AbstractWe present and discuss the results of the Herschel Gould Belt survey observations in a ~11 deg^2 area of the Aquila molecular cloud complex at d~260 pc, imaged with the SPIRE/PACS cameras from 70 to 500 micron. We identify a complete sample of starless dense cores and embedded protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% of which are gravitationally bound prestellar cores, and they will likely form stars in the future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the prestellar cores is very similar in shape to the stellar initial mass function (IMF), supporting the earlier view that there is a close physical link between the IMF and the CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40%. By comparing the numbers of starless cores to the number of young stellar objects, we estimate that the lifetime of prestellar cores is ~1 Myr. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to A_V~7, and ~75% of them lie within filamentary structures with supercritical masses per unit length >~16 M_sun/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at A_V>7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic "efficiency" SFR/M_dense ~5+-2 x 10^-8 yr^-1 for the star formation process in dense gas.
Source arXiv, 1507.5926
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica