Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » 1507.6613

 Article overview


Effect of high oxygen pressure annealing on superconducting Nd1.85Ce0.15CuO4 thin films by pulsed laser deposition from Cu-enriched targets
M. Hoek ; F. Coneri ; D.P. Leusink ; P.D. Eerkes ; X. Renshaw Wang ; H. Hilgenkamp ;
Date 23 Jul 2015
AbstractWe show that the quality of Nd1.85Ce0.15CuO4 films grown by pulsed laser deposition can be enhanced by using a non-stoichiometric target with extra copper added to suppress the formation of a parasitic (Nd, Ce)2O3 phase. The properties of these films are less dependent on the exact annealing procedure after deposition as compared to films grown from a stoichiometric target. Film growth can be followed by a 1 bar oxygen annealing, after an initial vacuum annealing, while retaining the superconducting properties and quality. This enables the integration of electron-doped cuprates with their hole-doped counterparts on a single chip, to create, for example, superconducting pn-junctions.
Source arXiv, 1507.6613
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica