Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1507.7480

 Article overview



Volatile snowlines in embedded disks around low-mass protostars
Daniel Harsono ; Simon Bruderer ; Ewine van Dishoeck ;
Date 27 Jul 2015
Abstract(Abridged*) Models of the young solar nebula assume a hot initial disk with most volatiles are in the gas phase. The question remains whether an actively accreting disk is warm enough to have gas-phase water up to 50 AU radius. No detailed studies have yet been performed on the extent of snowlines in an embedded accreting disk (Stage 0). Quantify the location of gas-phase volatiles in embedded actively accreting disk system. Two-dimensional physical and radiative transfer models have been used to calculate the temperature structure of embedded protostellar systems. Gas and ice abundances of H$_2$O, CO$_2$, and CO are calculated using the density-dependent thermal desorption formulation. The midplane water snowline increases from 3 to 55 AU for accretion rates through the disk onto the star between $10^{-9}$-$10^{-4} M_{odot} { m yr^{-1}}$. CO$_2$ can remain in the solid phase within the disk for $dot{M} leq 10^{-5} M_{odot} { m yr^{-1}}$ down to $sim 20$ AU. Most of the CO is in the gas phase within an actively accreting disk independent of disk properties and accretion rate. The predicted optically thin water isotopolog emission is consistent with the detected H$_2^{18}$O emission toward the Stage 0 embedded young stellar objects, originating from both the disk and the warm inner envelope (hot core). An accreting embedded disk can only account for water emission arising from $R < 50$ AU, however, and the extent rapidly decreases for low accretion rates. Thus, the radial extent of the emission can be measured with ALMA observations and compared to this limit. Volatiles sublimate out to 50 AU in young disks and can reset the chemical content inherited from the envelope in periods of high accretion rates. A hot young solar nebula out to 30 AU can only have occurred during the deeply embedded Stage 0, not during the T-Tauri phase of our early solar system.
Source arXiv, 1507.7480
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica