Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1507.7550

 Article overview


On the Viability of Minimal Neutrinophilic Two-Higgs-Doublet Models
P. A. N. Machado ; Y. F. Perez ; O. Sumensari ; Z. Tabrizi ; R. Zukanovich Funchal ;
Date 27 Jul 2015
AbstractWe study the constraints that electroweak precision data can impose, after the discovery of the Higgs boson by the LHC, on neutrinophilic two-Higgs-doublet models which comprise one extra $SU(2) imes U(1)$ doublet and a new symmetry, namely a spontaneously broken $mathbb{Z}_2$ or a softly broken global $U(1)$. In these models the extra Higgs doublet, via its very small vacuum expectation value, is the sole responsible for neutrino masses. We find that the model with a $mathbb{Z}_2$ symmetry is basically ruled out by electroweak precision data, even if the model is slightly extended to include extra right-handed neutrinos, due to the presence of a very light scalar. While the other model is still perfectly viable, the parameter space is considerably constrained by current data, specially by the $T$ parameter. In particular, the new charged and neutral scalars must have very similar masses.
Source arXiv, 1507.7550
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica