Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 1508.2394

 Article overview


Optical and Near-Infrared Spectroscopy of the Black Hole Swift J1753.5-0127
Farid Rahoui ; John A. Tomsick ; Mickael Coriat ; Stephane Corbel ; Felix Fuerst ; Poshak Gandhi ; Emrah Kalemci ; Simone Migliari ; Daniel Stern ; Anastasios Tzioumis ;
Date 10 Aug 2015
AbstractWe report on a multiwavelength observational campaign of the black hole X-ray binary Swift J1753.5-0127 that consists of an ESO/X-shooter spectrum supported by contemporaneous Swift/XRT+UVOT and ATCA data. ISM absorption lines in the X-shooter spectrum allows us to determine E(B-V)=0.45+/-0.02 along the line-of-sight to the source. We also report detection of emission signatures of He II at 4686 angstrom, H alpha, and, for the first time, H I at 10906 angstrom and Paschen Beta. The double-peaked morphology of these four lines is typical of the chromosphere of a rotating accretion disk. Nonetheless, the paucity of disk features points towards a low level of irradiation in the system. This is confirmed through spectral energy distribution modeling and we find that the UVOT+X-shooter continuum mostly stems from the thermal emission of a viscous disk. We speculate that the absence of reprocessing is due to the compactness of an illumination-induced envelope that fails to reflect enough incoming hard X-ray photons back to the outer regions. The disk also marginally contributes to the Compton-dominated X-ray emission and is strongly truncated, with an inner radius about a thousand times larger than the black hole’s gravitational radius. A near-infrared excess is present, and we associate it with synchrotron radiation from a compact jet. However, the measured X-ray flux is significantly higher than what can be explained by the optically thin synchrotron jet component. We discuss these findings in the framework of the radio quiet versus X-ray bright hypothesis, favoring the presence of a residual disk, predicted by evaporation models, that contributes to the X-ray emission without enhancing the radio flux.
Source arXiv, 1508.2394
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica