Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1509.6900

 Article overview



Evolution of Star Formation in the UKIDSS Ultra Deep Survey Field - II. Star Formation as a Function of Stellar Mass Between z=1.46 and z=0.63
Alyssa B. Drake ; Chris Simpson ; Ivan K. Baldry ; Phil A. James ; Chris A. Collins ; Masami Ouchi ; Suraphong Yuma ; James S. Dunlop ; Daniel J. B. Smith ;
Date Wed, 23 Sep 2015 09:36:59 GMT (1840kb,D)
AbstractWe present new results on the evolution of the cosmic star formation rate as a function of stellar mass in the SXDS-UDS field. We make use of narrow-band selected emission line galaxies in four redshift slices between z = 1.46 and z = 0.63, and compute stellar masses by fitting a series of templates to recreate each galaxy’s star formation history. We determine mass-binned luminosity functions in each redshift slice, and derive the star formation rate density (rhoSFR) as a function of mass using the [OIII] or [OII] emission lines. We calculate dust extinction and metallicity as a function of stellar mass, and investigate the effect of these corrections on the shape of the overall rhoSFR(M). We find that both these corrections are crucial for determining the shape of the rhoSFR(M), and its evolution with redshift. The fully corrected rhoSFR(M) is a relatively flat distribution, with the normalisation moving towards lower values of rhoSFR with increasing cosmic time/decreasing redshift, and requiring star formation to be truncated across all masses studied here. The peak of rhoSFR(M) is found in the 10^10.5<Msun<10^11.0 mass bin at z = 1.46. In the lower redshift slices the location of the peak is less certain, however low mass galaxies in the range 10^7.0<Msun<10^8.0 play an important part in the overall rhoSFR(M) out to at least z ~ 1.2.
Source arXiv, 1509.6900
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica