Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3644
Articles: 2'499'343
Articles rated: 2609

16 April 2024
 
  » arxiv » 1510.5870

 Article overview


New constraints on Saturn's interior from Cassini astrometric data
Valéry Lainey ; Robert A. Jacobson ; Radwan Tajeddine ; Nicholas J. Cooper ; Carl Murray ; Vincent Robert ; Gabriel Tobie ; Tristan Guillot ; Stéphane Mathis ; Françoise Remus ; Josselin Desmars ; Jean-Eudes Arlot ; Jean-Pierre De Cuyper ; Véronique Dehant ; Dan Pascu ; William Thuillot ; Christophe Le Poncin-Lafitte ; Jean-Paul Zahn ;
Date 20 Oct 2015
AbstractUsing astrometric observations spanning more than a century and including a large set of Cassini data, we determine Saturn’s tidal parameters through their current effects on the orbits of the eight main and four coorbital moons. We have used the latter to make the first determination of Saturn’s Love number, $k_2=0.390 pm 0.024$, a value larger than the commonly used theoretical value of 0.341 (Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which $k_2$ ranges from 0.355 to 0.382. Depending on the assumed spin for Saturn’s interior, the new constraint can lead to a reduction of up to 80% in the number of potential models, offering great opportunities to probe the planet’s interior. In addition, significant tidal dissipation within Saturn is confirmed (Lainey et al., 2012) corresponding to a high present-day tidal ratio $k_2/Q=(1.59 pm 0.74) imes 10^{-4}$ and implying fast orbital expansions of the moons. This high dissipation, with no obvious variations for tidal frequencies corresponding to those of Enceladus and Dione, may be explained by viscous friction in a solid core, implying a core viscosity typically ranging between $10^{14}$ and $10^{16}$ Pa.s (Remus et al., 2012). However, a dissipation increase by one order of magnitude at Rhea’s frequency could suggest the existence of an additional, frequency-dependent, dissipation process, possibly from turbulent friction acting on tidal waves in the fluid envelope of Saturn (Ogilvie & Li, 2004). Alternatively, a few of Saturn’s moons might themselves experience large tidal dissipation.
Source arXiv, 1510.5870
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica