Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » hep-th/0305165

 Article overview


Semiclassical quantization of gravity I: Entropy of horizons and the area spectrum
T. Padmanabhan ; Apoorva Patel ;
Date 19 May 2003
Subject hep-th astro-ph gr-qc
AbstractThe principle of equivalence provides a description of gravity in terms of the metric tensor and determines how gravity affects the light cone structure of the space-time. This, in turn, leads to the existence of observers (in any space-time) who do not have access to regions of space-time bounded by horizons. To take into account this generic possibility, it is necessary to demand that emph{physical theories in a given coordinate system must be formulated entirely in terms of variables that an observer using that coordinate system can access}. This principle is powerful enough to obtain the following results: (a) The action principle of gravity must be of such a structure that, in the semiclassical limit, the action of the unobserved degrees of freedom reduces to a boundary contribution $A_{ m boundary}$ obtained by integrating a four divergence. (b) When the boundary is a horizon, $A_{ m boundary}$ essentially reduces to a single, well-defined, term. (c) This boundary term must have a quantized spectrum with uniform spacing, $Delta A_{boundary}=2pihbar$, in the semiclassical limit. Using this principle in conjunction with the usual action principle in gravity, we show that: (i) The area of any one-way membrane is quantized. (ii) The information hidden by a one-way membrane leads to an entropy which is always one-fourth of the area of the membrane, in the leading order. (iii) In static space-times, the action for gravity can be given a purely thermodynamic interpretation and the Einstein equations have a formal similarity to laws of thermodynamics.
Source arXiv, hep-th/0305165
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica