Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1511.2461

 Article overview


Dust as interstellar catalyst - II. How chemical desorption impacts the gas
S. Cazaux ; M. Minissale ; F. Dulieu ; S. Hocuk ;
Date 8 Nov 2015
AbstractContext. Interstellar dust particles, which represent 1% of the total mass, are recognized to be very powerful interstellar catalysts in star-forming regions. The presence of dust can have a strong impact on the chemical composition of molecular clouds. While observations show that many species that formed onto dust grains populate the gas phase, the process that transforms solid state into gas phase remains unclear. Aims. The aim of this paper is to consider the chemical desorption process, i.e. the process that releases solid species into the gas phase, in astrochemical models. These models allow determining the chemical composition of star-forming environments with an accurate treatment of the solid-phase chemistry. Methods. In paper I we derived a formula based on experimental studies with which we quantified the efficiencies of the chemical desorption process. Here we extend these results to astrophysical conditions. Results. The simulations of astrophysical environments show that the abundances of gas-phase methanol and H2O2 increase by four orders of magnitude, whereas gas-phase H2CO and HO2 increase by one order of magnitude when the chemical desorption process is taken into account. The composition of the ices strongly varies when the chemical desorption is considered or neglected. Conclusions. We show that the chemical desorption process, which directly transforms solid species into gas-phase species, is very efficient for many reactions. Applied to astrophysical environments such as Rho Oph A, we show that the chemical desorption efficiencies derived in this study reproduce the abundances of observed gas-phase methanol, HO2, and H2O2, and that the presence of these molecules in the gas shows the last signs of the evolution of a cloud before the frost.
Source arXiv, 1511.2461
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica