Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1511.5116

 Article overview



Toward a tomographic analysis of the cross-correlation between Planck CMB lensing and H-ATLAS galaxies
Federico Bianchini ; Andrea Lapi ; Matteo Calabrese ; Pawel Bielewicz ; Joaquin Gonzalez-Nuevo ; Carlo Baccigalupi ; Luigi Danese ; Gianfranco de Zotti ; Nathan Bourne ; Asantha Cooray ; Loretta Dunne ; Stephen Eales ;
Date Mon, 16 Nov 2015 20:32:37 GMT (1888kb,D)
AbstractWe present an improved and extended analysis of the cross-correlation between the map of the Cosmic Microwave Background (CMB) lensing potential derived from the Planck mission data and the high-redshift galaxies detected by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in the photometric redshift range $z_{ m ph} ge 1.5$. We compare the results based on the 2013 and 2015 Planck datasets, and investigate the impact of different selections of the H-ATLAS galaxy samples. Significant improvements over our previous analysis have been achieved thanks to the higher signal-to-noise ratio of the new CMB lensing map recently released by the Planck collaboration. The effective galaxy bias parameter, $b$, for the full galaxy sample, derived from a joint analysis of the cross-power spectrum and of the galaxy auto-power spectrum is found to be $b = 3.54^{+0.15}_{-0.14}$. Furthermore, a first tomographic analysis of the cross-correlation signal is implemented, by splitting the galaxy sample into two redshift intervals: $1.5 le z_{ m ph} < 2.1$ and $z_{ m ph}ge 2.1$. A statistically significant signal was found for both bins, indicating a substantial increase with redshift of the bias parameter: $b=2.89pm0.23$ for the lower and $b=4.75^{+0.24}_{-0.25}$ for the higher redshift bin. Consistently with our previous analysis we find that the amplitude of the cross correlation signal is a factor of $1.45^{+0.14}_{-0.13}$ higher than expected from the standard $Lambda$CDM model. The robustness of our results against possible systematic effects has been extensively discussed although the tension is mitigated by passing from 4 to 3$sigma$.
Source arXiv, 1511.5116
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica