Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1512.6378

 Article overview


Simultaneous IRIS and Hinode/EIS observations and modelling of the 27 October 2014 X 2.0 class flare
V. Polito ; J.W. Reep ; K.K. Reeves ; P.J.A. Simões ; J. Dudík ; G. Del Zanna ; H.E. Mason ; L. Golub ;
Date 20 Dec 2015
AbstractWe present the study of the X2-class flare which occurred on the 27 October 2014 and was observed with the Interface Region Imaging Spectrograph (IRIS) and the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. Thanks to the high cadence and spatial resolution of the IRIS and EIS instruments, we are able to compare simultaneous observations of the xxi~1354.08~AA~and xxiii~263.77~AA~high temperature emission ($gtrsim$ 10~MK) in the flare ribbon during the chromospheric evaporation phase. We find that IRIS observes completely blue-shifted xxi~line profiles, up to 200 km s$^{-1}$ during the rise phase of the flare, indicating that the site of the plasma upflows is resolved by IRIS. In contrast, the xxiii~line is often asymmetric, which we interpret as being due to the lower spatial resolution of EIS. Temperature estimates from SDO/AIA and Hinode/XRT show that hot emission (log($T$)[K] $>$ 7.2) is first concentrated at the footpoints before filling the loops. Density sensitive lines from IRIS and EIS give electron number density estimates of $gtrsim$~10$^{12}$~cm$^{-3}$ in the transition region lines and 10$^{10}$~cm$^{-3}$ in the coronal lines during the impulsive phase. In order to compare the observational results against theoretical predictions, we have run a simulation of a flare loop undergoing heating using the HYDRAD 1D hydro code. We find that the simulated plasma parameters are close to the observed values which are obtained with IRIS, Hinode and AIA. These results support an electron beam heating model rather than a purely thermal conduction model as the driving mechanism for this flare.
Source arXiv, 1512.6378
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica