Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3286
Articles: 2'244'342
Articles rated: 2592

18 August 2022
 
  » arxiv » hep-th/0311162

 Article overview


Twistors, CFT and Holography
Kirill Krasnov ;
Date 18 Nov 2003
Subject hep-th
AffiliationAEI, Golm/Potsdam
AbstractAccording to one of many equivalent definitions of twistors a (null) twistor is a null geodesic in Minkowski spacetime. Null geodesics can intersect at points (events). The idea of Penrose was to think of a spacetime point as a derived concept: points are obtained by considering the incidence of twistors. One needs two twistors to obtain a point. Twistor is thus a ``square root’’ of a point. In the present paper we entertain the idea of quantizing the space of twistors. Twistors, and thus also spacetime points become operators acting in a certain Hilbert space. The algebra of functions on spacetime becomes an operator algebra. We are therefore led to the realm of non-commutative geometry. This non-commutative geometry turns out to be related to conformal field theory and holography. Our construction sheds an interesting new light on bulk/boundary dualities.
Source arXiv, hep-th/0311162
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2022 - Scimetrica