Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1512.9110

 Article overview



Machine Learning methods for interatomic potentials: application to boron carbide
Qin Gao ; Sanxi Yao ; Jeff Schneider ; Michael Widom ;
Date 30 Dec 2015
AbstractTotal energies of crystal structures can be calculated to high precision using quantum-based density functional theory (DFT) methods, but the calculations can be time consuming and scale badly with system size. Cluster expansions of total energy as a linear superposition of pair, triplet and higher interactions can efficiently approximate the total energies but are best suited to simple lattice structures. To model the total energy of boron carbide, with a complex crystal structure, we explore the utility of machine learning methods ($L_1$-penalized regression, neural network, Gaussian process and support vector regression) that capture certain non-linear effects associated with many-body interactions despite requiring only pair frequencies as input. Our interaction models are combined with Monte Carlo simulations to evaluate the thermodynamics of chemical ordering.
Source arXiv, 1512.9110
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica