Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1602.6087

 Article overview



Critical Temperature Enhancement of Topological Superconductors: A Dynamical Mean Field Study
Yuki Nagai ; Shintaro Hoshino ; Yukihiro Ota ;
Date 19 Feb 2016
AbstractWe show that a critical temperature Tc for spin-singlet two-dimensional superconductivity is enhanced by a cooperation between the Zeeman magnetic field and the Rashba spin-orbit coupling, where a superconductivity becomes topologically non-trivial below Tc. The dynamical mean field theory (DMFT) with the segment-based hybridization-expansion continuous-time quantum Monte Carlo impurity solver (ct-HYB) is used for accurately evaluating a critical temperature, without any Fermion sign problem. A strong-coupling approach shows that spin-flip driven local pair hopping leads to part of this enhancement, especially effects of the magnetic field. We propose physical settings suitable for verifying the present calculations, one-atom-layer system on Si(111) and ionic-liquid based electric double-layer transistors (EDLTs).
Source arXiv, 1602.6087
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica