Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1603.0679

 Article overview



Fitting peculiar spectral profiles in He I 10830 {A} absorption features
S. J. González Manrique ; C. Kuckein ; A. Pastor Yabar ; M. Collados C. Denker ; C. E. Fischer ; P. Gömöry ; A. Diercke ; N. Bello González ; R. Schlichenmaier ; H. Balthasar ; T. Berkefeld ; A. Feller ; S. Hoch ; A. Hofmann ; F. Kneer ; A. Lagg ; H. Nicklas ; D. Orozco Suárez ; D. Schmidt ; W. Schmidt ; M. Sigwarth ; M. Sobotka ; S.K. Solanki ; D. Soltau ; J. Staude ; K.G. Strassmeier ; M. Verma ; R. Volkmer ; O. von der Lühe ; T. Waldmann ;
Date 2 Mar 2016
AbstractThe new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He I 10830 {A} triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He I 10830 {A} triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-meter GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub- and supersonic downflow velocities of up to 32 km/s for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest.
Source arXiv, 1603.0679
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica