Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1603.2069

 Article overview



A Study of Fractional Schrodinger Equation-composed via Jumarie fractional derivative
Joydip Banerjee ; Uttam Ghosh ; Susmita Sarkar ; Shantanu Das ;
Date 25 Feb 2016
AbstractOne of the motivations for using fractional calculus in physical systems is due to fact that many times, in the space and time variables we are dealing which exhibit coarse-grained phenomena, meaning that infinitesimal quantities cannot be placed arbitrarily to zero-rather they are non-zero with a minimum length. Especially when we are dealing in microscopic to mesoscopic level of systems. Meaning if we denote x the point in space and t as point in time; then the differentials dx (and dt) cannot be taken to limit zero, rather it has spread. A way to take this into account is to use infinitesimal quantities as (Deltax)^alpha (and (Deltat)^alpha) with 0<alpha<1, which for very-very small Deltax (and Deltat); that is trending towards zero, these ’fractional’ differentials are greater that Deltax (and Deltat). That is (Deltax)^alpha>Deltax. This way defining the differentials-or rather fractional differentials makes us to use fractional derivatives in the study of dynamic systems. In fractional calculus the fractional order trigonometric functions play important role. The Mittag-Leffler function which plays important role in the field of fractional calculus; and the fractional order trigonometric functions are defined using this Mittag-Leffler function. In this paper we established the fractional order Schrodinger equation-composed via Jumarie fractional derivative; and its solution in terms of Mittag-Leffler function with complex arguments and derive some properties of the fractional Schrodinger equation that are studied for the case of particle in one dimensional infinite potential well.
Source arXiv, 1603.2069
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica