Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » 1603.8721

 Article overview


WISH VI. Constraints on UV and X-ray irradiation from a survey of hydrides in low- to high-mass YSOs
A. O. Benz ; S. Bruderer ; E. F. van Dishoeck ; M. Melchior ; S. F. Wampfler ; F. van der Tak ; J. R. Goicoechea ; N. Indriolo ; L. E. Kristensen ; D.C. Lis ; J. C. Mottram ; E. A. Bergin ; P. Caselli ; F. Herpin ; M. R. Hogerheijde ; D. Johnstone ; R. Liseau ; B. Nisini ; M. Tafalla ; R. Visser ; F. Wyrowski ;
Date 29 Mar 2016
AbstractHydrides are simple compounds containing one or a few hydrogen atoms bonded to a heavier atom. They are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides, such as CH+ and OH+, and also HCO+ that affect the chemistry of molecules such as water, provide complementary information on irradiation by far UV (FUV) or X-rays and gas temperature. The targeted lines of CH+, OH+, H2O+, C+ and CH are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. The observed line parameters and correlations suggest two different origins, related to gas entrained by the outflows and to the circumstellar envelope. The column density ratios of CH+/OH+ are estimated from chemical slab models, assuming that the H2 density is given by the specific density model of each object at the beam radius. For the low-mass YSOs the observed ratio can be reproduced for an FUV flux of 2-400 times the ISRF at the location of the molecules. In two high-mass objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L_sun, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.
Source arXiv, 1603.8721
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica