Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1604.6542

 Article overview


Direct experimental evidence of pi magnetism of a single atomic vacancy in graphene
Yu Zhang ; Si-Yu Li ; Wen-Tian Li ; Jia-Bin Qiao ; Wen-Xiao Wang ; Long-Jin Yin ; Lin He ;
Date 22 Apr 2016
AbstractThe pristine graphene is strongly diamagnetic. However, graphene with single carbon atom defects could exhibit paramagnetism with local magnetic moments ~ 1.5 per vacancy1-6. Theoretically, both the electrons and electrons of graphene contribute to the magnetic moment of the defects, and the pi magnetism is characterizing of two spin-split DOS (density-of-states) peaks close to the Dirac point1,6. Since its prediction, many experiments attempt to study this pi magnetism in graphene, whereas, only a notable resonance peak has been observed around the atomic defects6-9, leaving the pi magnetism experimentally so elusive. Here, we report direct experimental evidence of the pi magnetism by using scanning tunnelling microscope. We demonstrate that the localized state of the atomic defects is split into two DOS peaks with energy separations of several tens meV and the two spin-polarized states degenerate into a profound peak at positions with distance of ~ 1 nm away from the monovacancy. Strong magnetic fields further increase the energy separations of the two spin-polarized peaks and lead to a Zeeman-like splitting. The effective g-factors geff around the atomic defect is measured to be about 40. Such a giant enhancement of the g-factor is attributed to the strong spin polarization of electron density and large electron-electron interactions near the atomic vacancy.
Source arXiv, 1604.6542
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica