Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » 1604.7501

 Article overview


Mapping the Monoceros Ring in 3D with Pan-STARRS1
Eric Morganson ; Blair Conn ; Hans-Walter Rix ; Eric F. Bell ; William S. Burgett ; Kenneth Chambers ; Andrew Dolphin ; Peter W. Draper ; Heather Flewelling ; Klaus Hodapp ; Nick Kaiser ; Eugene A. Magnier ; Nicolas F. Martin ; David Martinez-Delgado ; Nigel Metcalfe ; Edward F. Schlafly ; Colin T. Slater ; Richard J. Wainscoat ; Christopher Z. Waters ;
Date 26 Apr 2016
AbstractUsing the Pan-STARRS1 survey, we derive limiting magnitude, spatial completeness and density maps that we use to probe the three dimensional structure and estimate the stellar mass of the so-called Monoceros Ring. The Monoceros Ring is an enormous and complex stellar sub-structure in the outer Milky Way disk. It is most visible across the large Galactic Anticenter region, 120 < l < 240 degrees, -30 < b < +40 degrees. We estimate its stellar mass density profile along every line of sight in 2 X 2 degree pixels over the entire 30,000 square degree Pan-STARRS1 survey using the previously developed MATCH software. By parsing this distribution into a radially smooth component and the Monoceros Ring, we obtain its mass and distance from the Sun along each relevant line of sight. The Monoceros Ring is significantly closer to us in the South (6 kpc) than in the North (9 kpc). We also create 2D cross sections parallel to the Galactic plane that show 135 degrees of the Monoceros Ring in the South and 170 degrees of the Monoceros Ring in the North. We show that the Northern and Southern structures are also roughly concentric circles, suggesting that they may be a wave rippling from a common origin. Excluding the Galactic plane, we observe an excess stellar mass of 4 million solar masses across 120 < l < 240 degrees. If we interpolate across the Galactic plane, we estimate that this region contains 8 million solar masses. If we assume (somewhat boldly) that the Monoceros Ring is a set of two Galactocentric rings, its total stellar mass is 60 million solar masses. Finally, if we assume that it is a set of two circles centered at a point 4 kpc from the Galactic center in the anti-central direction, as our data suggests, we estimate its stellar mass to be 40 million solar masses.
Source arXiv, 1604.7501
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica