Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » 1608.8035

 Article overview


The 2008 outburst in the Young Stellar System Z CMa. III - Multi-epoch high-angular resolution images and spectra of the components in near-infrared
M. Bonnefoy ; G. Chauvin ; C. Dougados ; A. Kospal ; M. Benisty ; G. Duchene ; J. Bouvier ; P. J. V. Garcia ; E. Whelan ; S. Antoniucci ; L. Podio ;
Date 29 Aug 2016
AbstractZ CMa is a complex pre-main sequence binary with a current separation of 100 mas, known to consist of an FU Orionis star (SE component) and an embedded Herbig Be star (NW component). Immediately when the late-2008 outburst of Z CMa was announced to the community, we initiated a high angular resolution imaging campaign with VLT/NaCo, Keck/NIRC2, VLT/SINFONI, and Keck/OSIRIS which aimed at characterizing the outburst of both components of the system in the near-infrared. We confirm that the NW star dominates the system flux in the 1.1-3.8 microns range and is responsible for the photometric outburst. We extract the first medium-resolution (R=2000-4000) near-infrared (1.1-2.4 microns) spectra of the individual components during and after the outburst. The SE component has a spectrum typical of FU Orionis objects. The NW component spectrum is characteristic of embedded outbursting protostars and EX Or objects. It displays numerous emission lines during the outburst whose intensity correlates with the system activity. In particular, we find a correlation between the Brackett gamma equivalent width and the system brightness. The bluing of the continuum of the NW component along with the absolute flux and color-variation of the system during the outburst suggests that the outburst was caused by a complex interplay between a variation of the extinction in the line of sight of the NW component on one hand, and the emission of shocked regions close to the NW component on the other. We confirm the recently reported wiggling of the SE component jet from [Fe II] line emission. We find a point-like structure associated with a peak emission at 2.098 microns coincidental with the clump or arm seen in broadband polarization differential imaging as well as additional diffuse emission along a PA=214 degrees. The origin of these two structures is unclear and deserves further investigation.
Source arXiv, 1608.8035
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica