Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » physics/0311067

 Article overview


W3 theory: robust computational thermochemistry in the kJ/mol accuracy range
A. Daniel Boese ; Mikhal Oren ; Onur Atasoylu ; Jan M.L. Martin ; Mihaly Kallay ; Juergen Gauss ;
Date 14 Nov 2003
Journal Journal of Chemical Physics 120, 4129-4141 (2004) DOI: 10.1063/1.1638736
Subject Chemical Physics; Computational Physics | physics.chem-ph physics.comp-ph
AbstractWe are proposing a new computational thermochemistry protocol denoted W3 theory, as a successor to W1 and W2 theory proposed earlier [Martin and De Oliveira, J. Chem. Phys. 111, 1843 (1999)]. The new method is both more accurate overall (error statistics for total atomization energies approximately cut in half) and more robust (particularly towards systems exhibiting significant nondynamical correlation) than W2 theory. The cardinal improvement rests in an approximate account for post-CCSD(T) correlation effects. Iterative T_3 (connected triple excitations) effects exhibit a basis set convergence behavior similar to the T_3 contribution overall. They almost universally decrease molecular binding energies. Their inclusion in isolation yields less accurate results than CCSD(T) nearly across the board: it is only when T_4 (connected quadruple excitations) effects are included that superior performance is achieved. $T_4$ effects systematically increase molecular binding energies. Their basis set convergence is quite rapid, and even CCSDTQ/cc-pVDZ scaled by an empirical factor of 1.2532 will yield a quite passable quadruples contribution. The effect of still higher-order excitations was gauged for a subset of molecules (notably the eight-valence electron systems): T_5 (connected quintuple excitations) contributions reach 0.3 kcal/mol for the pathologically multireference X ^1Sigma^+_g state of C_2 but are quite small for other systems. A variety of avenues for achieving accuracy beyond that of W3 theory were explored, to no significant avail. W3 thus appears to represent a good compromise between accuracy and computational cost for those seeking a robust method for computational thermochemistry in the kJ/mol accuracy range on small systems.
Source arXiv, physics/0311067
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica