Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » quant-ph/0304156

 Article overview


Testing Bell's inequality and measuring the entanglement using superconducting nanocircuits
Guang-Ping He ; Shi-Liang Zhu ; Z. D. Wang ; Hua-Zhong Li ;
Date 24 Apr 2003
Journal Phys. Rev. A 68, 012315 (2003)
Subject quant-ph
AbstractAn experimental scheme is proposed to test Bell’s inequality by using superconducting nanocircuits. In this scheme, quantum entanglement of a pair of charge qubits separated in a sufficient long distance may be created by cavity quantum electrodynamic techniques; the population of qubits is experimentally measurable by dc currents through the probe junctions, and one measured outcome may be recorded for every experiment. Therefore, both locality and detection efficiency loopholes should be closed in the same experiment. We also propose a useful method to measure the amount of entanglement based on the concurrence between Josephson qubits. The measurable variables for Bell’s inequality as well as the entanglement are expressed in terms of a useful phase-space Q function.
Source arXiv, quant-ph/0304156
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica