forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3431
Articles: 2'258'156
Articles rated: 2602

06 October 2022
  » arxiv » 1612.0551

 Article overview

A Classical and Spinorial Description of the Relativistic Spinning Particle
Trevor Rempel ; Laurent Freidel ;
Date 2 Dec 2016
AbstractIn a previous work we showed that spin can be envisioned as living in a phase space that is dual to the standard phase space of position and momentum. In this work we demonstrate that the second class constraints inherent in this "Dual Phase Space" picture can be solved by introducing a spinorial parameterization of the spinning degrees of freedom. This allows for a purely first class formulation that generalizes the usual relativistic description of spinless particles and provides several insights into the nature of spin and its relationship with spacetime and locality. In particular, we find that the spin motion acts as a Lorentz contraction on the four-velocity and that, in addition to proper time, spinning particles posses a second gauge invariant observable which we call proper angle. Heuristically, this proper angle represents the amount of Zitterbewegung necessary for a spin transition to occur. Additionally, we show that the spin velocity satisfies a causality constraint, and even more stringently, that it is constant along classical trajectories. This leads to the notion of "half-quantum" states which violate the classical equations of motion, and yet do not experience an exponential suppression in the path integral. Finally we give a full analysis of the Poisson bracket structure of this new parametrization.
Source arXiv, 1612.0551
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2022 - Scimetrica