Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 1701.1098

 Article overview


The direct localization of a fast radio burst and its host
S. Chatterjee ; C. J. Law ; R. S. Wharton ; S. Burke-Spolaor ; J. W. T. Hessels ; G. C. Bower ; J. M. Cordes ; S. P. Tendulkar ; C. G. Bassa ; P. Demorest ; B. J. Butler ; A. Seymour ; P. Scholz ; M. W. Abruzzo ; S. Bogdanov ; V. M. Kaspi ; A. Keimpema ; T. J. W. Lazio ; B. Marcote ; M. A. McLaughlin ; Z. Paragi ; S. M. Ransom ; M. Rupen ; L. G. Spitler ; H. J. van Langevelde ;
Date 4 Jan 2017
AbstractFast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities orders of magnitude larger than any other kind of known short-duration radio transient. Thus far, all FRBs have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the sub-arcsecond localization of FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts themselves. Our precise localization reveals that FRB 121102 originates within 100 mas of a faint 180 uJy persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (25th magnitude) optical counterpart. The flux density of the persistent radio source varies by tens of percent on day timescales, and very long baseline radio interferometry yields an angular size less than 1.7 mas. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. [Truncated] If other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct sub-arcsecond localizations of FRBs may be the only way to provide reliable associations.
Source arXiv, 1701.1098
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica