Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1702.0782

 Article overview



Super cavity solitons and the coexistence of multiple nonlinear states in a tristable passive Kerr resonator
Miles Anderson ; Yadong Wang ; Francois Leo ; Stephane Coen ; Miro Erkintalo ; Stuart Murdoch ;
Date 2 Feb 2017
AbstractPassive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics, including bistability, pattern formation, and localised dissipative structures (solitons). Their conceptual simplicity has for several decades offered an unprecedented window into nonlinear cavity dynamics, providing insights into numerous systems and applications ranging from all-optical memory devices to microresonator frequency combs. Yet despite the decades of study, a recent theoretical study has surprisingly alluded to an entirely new and unexplored paradigm in the regime where nonlinearly tilted cavity resonances overlap with one another [T. Hansson and S. Wabnitz, J. Opt. Soc. Am. B 32, 1259 (2015)]. We have used synchronously driven fiber ring resonators to experimentally access this regime, and observed the rise of new nonlinear dissipative states. Specifically, we have observed, for the first time to the best of our knowledge, the stable coexistence of dissipative (cavity) solitons and extended modulation instability (Turing) patterns, and performed real time measurements that unveil the dynamics of the ensuing nonlinear structures. When operating in the regime of continuous wave tristability, we have further observed the coexistence of two distinct cavity soliton states, one of which can be identified as a "super" cavity soliton as predicted by Hansson and Wabnitz. Our experimental findings are in excellent agreement with theoretical analyses and numerical simulations of the infinite-dimensional Ikeda map that governs the cavity dynamics. The results from our work reveal that experimental systems can support complex combinations of distinct nonlinear states, and they could have practical implications to future microresonator-based frequency comb sources.
Source arXiv, 1702.0782
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica