Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » 1703.9874

 Article overview


Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth vs. Resolution
Teresa A. Ashcraft ; Rogier A. Windhorst ; Rolf A. Jansen ; Seth H. Cohen ; Andrea Grazian ; Diego Paris ; Adriano Fontana ; Emanuele Giallongo ; Roberto Speziali ; Vincenzo Testa ; Konstantina Boutsia ; Robert W. O'Connell ; Michael Rutkowski ; Russell Ryan ; Claudia Scarlata ; Benjamin Weiner ;
Date 29 Mar 2017
AbstractWe present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field (Giavalisco et al. 2004) from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of data (315 images with 5-6 mins exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM $lesssim$0.8"), which constitute $sim$10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM $lesssim$1.8" ($sim$94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are $sim$90% complete to $U_{AB}$ $lesssim26$. Fainter than $U_{AB}$$sim$ 27, the object counts from the optimal-resolution image start to drop-off dramatically (90% between $U_{AB}$ = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity ($mu^{AB}_{U}$$lesssim$ 32 mag arcsec$^{-2}$) show a more gradual drop (10% between $U_{AB}$ $simeq$ 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. Finally, we find - for 220 brighter galaxies with $U_{AB}$$lesssim$ 24 mag - only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to $mu^{AB}_{U}$$lesssim$ 32 mag arcsec$^{-2}$. In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light.
Source arXiv, 1703.9874
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica