Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 1706.8834

 Article overview


The L1157-B1 astrochemical laboratory: testing the origin of DCN
G. Busquet ; F. Fontani ; S. Viti ; C. Codella ; L. Podio ; B. Lefloch ; M. Benedettini ; C. Ceccarelli ;
Date 27 Jun 2017
AbstractL1157-B1 is the brightest shocked region of the large scale molecular outflow, considered the prototype of chemically rich outflows, being the ideal laboratory to study how shocks affect the molecular gas. Several deuterated molecules have been previously detected with the IRAM 30m, most of them formed on grain mantles and then released into the gas phase due to the shock. We aim to investigate observationally the role of the different chemical processes at work that lead to formation the of DCN and test the predictions of the chemical models for its formation. We performed high angular resolution observations with NOEMA of the DCN(2-1) and H13CN(2-1) lines to compute the deuterated fraction, Dfrac(HCN).We detected emission of DCN(2-1) and H13CN(2-1) arising from L1157-B1 shock. Dfrac(HCN) is ~4x10$^{-3}$ and given the uncertainties, we did not find significant variations across the bow-shock. Contrary to HDCO, for which its emission delineates the region of impact between the jet and the ambient material, DCN is more widespread and not limited to the impact region. This is consistent with the idea that gas-phase chemistry is playing a major role in the deuteration of HCN in the head of the bow-shock, where HDCO is undetected as it is a product of grain-surface chemistry. The spectra of DCN and H13CN match the spectral signature of the outflow cavity walls, suggesting that their emission result from shocked gas. The analysis of the time dependent gas-grain chemical model UCL-CHEM coupled with a C-type shock model shows that the observed Dfrac(HCN) is reached during the post-shocked phase, matching the dynamical timescale of the shock. Our results indicate that the presence of DCN in L1157-B1 is a combination of gas-phase chemistry that produces the widespread DCN emission, dominating in the head of the bow-shock, and sputtering from grain mantles toward the jet impact region.
Source arXiv, 1706.8834
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica