Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1710.4997

 Article overview


The search for radio emission from exoplanets using LOFAR low-frequency beam-formed observations: Data pipeline and preliminary results for the 55 Cnc system
Jake D. Turner ; Jean-Mathias Grießmeier ; Philippe Zarka ; Iaroslavna Vasylieva ;
Date 13 Oct 2017
AbstractDetection of radio emission from exoplanets can provide information on the star-planet system that is difficult to study otherwise, such as the planetary magnetic field, magnetosphere, rotation period, interior structure, atmospheric dynamics and escape, and any star-planet interactions. Such a detection in the radio domain would open up a whole new field in the study of exoplanets. However, currently there are no confirmed detections of an exoplanet at radio frequencies. In this study, we search for non-thermal radio emission from the 55 Cnc system which has 5 known exoplanets. According to theoretical predictions 55 Cnc e, the innermost planet, is among the best targets for this search. We observed for 18 hours with the Low-Frequency Array (LOFAR) Low Band Antenna in the frequency range 26-73 MHz with full-polarization and covered 85% of the orbital phase of 55 Cnc e. During the observations four digital beams within the station beam were recorded simultaneously on 55 Cnc, nearby "empty" sky, a bright radio source, and a pulsar. A pipeline was created to automatically find and mask radio frequency interference, calibrate the time-frequency response of the telescope, and to search for bursty planetary radio signals in our data. Extensive tests and verifications were carried out on the pipeline. Analysis of the first 4 hours of these observations do not contain any exoplanet signal from 55 Cnc but we can confirm that our setup is adequate to detect faint astrophysical signals. We find a 3$sigma$ upper limit for 55 Cnc of 230 mJy using the pulsar to estimate the sensitivity of the observations and 2.6 Jy using the time-series difference between the target and sky beam. The full data set is still under-going analysis. In the near future we will apply our observational technique and pipeline to the most promising exoplanet candidates for which LOFAR observations have already been obtained.
Source arXiv, 1710.4997
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica