forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 2982
Articles: 2'034'350
Articles rated: 2577

27 January 2021
  » arxiv » 1711.2022

 Article overview

From Spinning Conformal Blocks to Matrix Calogero-Sutherland Models
Volker Schomerus ; Evgeny Sobko ;
Date 6 Nov 2017
AbstractIn this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of cite{Schomerus:2016epl} is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schr"{o}dinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.
Source arXiv, 1711.2022
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2021 - Scimetrica