Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 1711.3480

 Article overview


Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission
Duo Xu ; Stella S. R. Offner ;
Date 9 Nov 2017
AbstractStellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature ("bubbles") that affect the dynamics and structure of the cloud. Most bubble searches are performed "by-eye", which are usually time-consuming, subjective and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magneto-hydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte-Carlo radiative transfer code, hyperion, to generate synthetic images of bubbles in three Spitzer bands (4.5 um, 8 um and 24 um). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project. We then assess Brut’s accuracy using the remaining synthetic observations. We find that after retraining Brut’s performance increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the Milky Way Project bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the Milky Way Project data. We also investigate the size of the training set, dust model, evolution stage and background noise on bubble identification.
Source arXiv, 1711.3480
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica