Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 1711.6038

 Article overview



Computational Study on Hysteresis of Ion Channels: Multiple Solutions to Steady-State Poisson--Nernst--Planck Equations
Jie Ding ; Hui Sun ; Zhongming Wang ; Shenggao Zhou ;
Date 16 Nov 2017
AbstractThe steady-state Poisson-Nernst-Planck (ssPNP) equations are an effective model for the description of ionic transport in ion channels. It is observed that an ion channel exhibits voltage-dependent switching between open and closed states. Different conductance states of a channel imply that the ssPNP equations probably have multiple solutions with different level of currents. We propose numerical approaches to study multiple solutions to the ssPNP equations with multiple ionic species. To find complete current-voltage (I-V ) and current-concentration (I-C) curves, we reformulate the ssPNP equations into four different boundary value problems (BVPs). Numerical continuation approaches are developed to provide good initial guesses for iteratively solving algebraic equations resulting from discretization. Numerical continuations on V , I, and boundary concentrations result in S-shaped and double S-shaped (I-V and I-C) curves for the ssPNP equations with multiple species of ions. There are five solutions to the ssPNP equations with five ionic species, when an applied voltage is given in certain intervals. Remarkably, the current through ion channels responds hysteretically to varying applied voltages and boundary concentrations, showing a memory effect. In addition, we propose a useful computational approach to locate turning points of an I-V curve. With obtained locations, we are able to determine critical threshold values for hysteresis to occur and the interval for V in which the ssPNP equations have multiple solutions. Our numerical results indicate that the developed numerical approaches have a promising potential in studying hysteretic conductance states of ion channels.
Source arXiv, 1711.6038
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica