Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » 1712.5463

 Article overview


Multi-wavelength scaling relations in galaxy groups: a detailed comparison of GAMA and KiDS observations to BAHAMAS simulations
Arthur Jakobs ; Massimo Viola ; Ian McCarthy ; Ludovic van Waerbeke ; Henk Hoekstra ; Aaron Robotham ; Gary Hinshaw ; Alireza Hojjati ; Hideki Tanimura ; Tilman Tröster ; Ivan Baldry ; Catherine Heymans ; Hendrik Hildebrandt ; Konrad Kuijken ; Peder Norberg ; Joop Schaye ; Cristóbal Sifon ; Edo van Uitert ; Edwin Valentijn ; Gijs Verdoes Kleijn ; Lingyu Wang ;
Date 14 Dec 2017
AbstractWe study the scaling relations between the baryonic content and total mass of groups of galaxies, as these systems provide a unique way to examine the role of non-gravitational processes in structure formation. Using Planck and ROSAT data, we conduct detailed comparisons of the stacked thermal Sunyaev-Zel’dovich (tSZ) effect and X-ray scaling relations of galaxy groups found in the the Galaxy And Mass Assembly (GAMA) survey and the BAHAMAS hydrodynamical simulation. We use weak gravitational lensing data from the Kilo Degree Survey (KiDS) to determine the average halo mass of the studied systems. We analyse the simulation in the same way, using realistic weak lensing, X-ray, and tSZ synthetic observations. Furthermore, to keep selection biases under control, we employ exactly the same galaxy selection and group identification procedures to the observations and simulation. Applying this careful comparison, we find that the simulations are in agreement with the observations, particularly with regards to the scaling relations of the lensing and tSZ results. This finding demonstrates that hydrodynamical simulation have reached the level of realism that is required to interpret observational survey data and study the baryon physics within dark matter haloes, where analytical modelling is challenging. Finally, using simulated data, we demonstrate that our observational processing of the X-ray and tSZ signals is free of significant biases. We find that our optical group selection procedure has, however, some room for improvement.
Source arXiv, 1712.5463
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica